Abstract
The purpose of the work is to study the influence of hafnium additives on the mechanical properties and thermal stability of particles at elevated temperature during heat treatment of aluminum alloys with a high magnesium content. Two modifications of 1570 alloy were chosen for the study: without hafnium content and with its addition of 0.5 % by weight. Both alloys were subjected to homogenizing annealing at a temperature of 440 °C with different exposure modes, which ranged from 2 to 100 h. Microhardness was studied for various heat treatment modes, and the fine microstructure was studied as well using transmission microscopy. As a result, it was possible to identify that during annealing at a short exposure time (2–8 h), the alloy with the hafnium addition has higher microhardness values exceeding those of 1570 alloy by an average of 20 HV units. This is associated with the fact that in 1570 alloy with hafnium additives, during heat treatment, the number of precipitated particles increases while their average size decreases compared to the base alloy. At the same time, in 1570 alloy without hafnium content, when annealed at a temperature of 440 °C, there is no increase in microhardness. This is caused by the fact that in 1570 alloy without hafnium content, when cooled after casting, discontinuous decomposition occurs, which resulted in the fact that most of the scandium precipitates from the supersaturated solid solution in the form of dispersoids. This phenomenon is not observed in the alloy with hafnium additives, which indicates its ability to stop discontinuous decomposition during cooling the ingot after casting.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have