Abstract
Histogram Equalization (HE) is a very popular technique for enhancing the contrast of an image. HE stretches the dynamic range of an image using the cumulative distribution function of a given input image, therefore improving its contrast. However, HE has a well-known problem : when HE is applied for the contrast enhancement, there is a significant change in brightness. To resolve this problem, we propose An Adaptive Contrast Enhancement Algorithm using Subhistogram Area-Ratioed Histogram Redistribution, a new method that helps reduce excessive contrast enhancement. This proposed algorithm redistributes the dynamic range of an input image using its mean luminance value and the ratio of sub-histogram area. Experimental results show that by this redistribution, the significant change in brightness is reduced effectively and the output image is able to preserve the naturalness of an original image even if it has a poor histogram distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.