Abstract

The dependences of forces affecting basic elements of spherical roller gears with a double-row pinion from engagement parameters and friction coefficients are defined. The power dependences obtained allow estimating spherical roller gear (SRG) elements loading and defining optimum values of basic sphere radii and center profile amplitudes at a specified reduction ratio according to the criterion of minimum power loss in an engagement. It is defined that the performance of the SRG with the double-row pinions is comparable with the performance of planetary gear drives with two-ring gear pinions. For SRGs it depends in the inverse proportion upon a reduction ratio and increases with the increase of the roller number difference (periods of center profiles) in two rows. The SRG performance decreases considerably at friction constant increase as in worm gears. The analysis carried out confirmed the equivalence of two power circuits of gear according to the criterion of maximum output capability. The tests of the reducer experimental sample with SRG have confirmed kinematic and power dependences defined theoretically.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.