Abstract

The paper studies parametrical vibrations of the ship shaft line, which arise because of harmonical change in time of rigidity of a propeller shaft and a stern bearing. The design model of a propeller shaft shows a beam with a cross section constant along its length, which leans on hinged immovable and springy support simulating a stern bearing. At the end of a beam there is a disk simulating a propeller screw. Parametrical vibrations arise due to the external loading and as a result of amortization of the stern bearing. In the analysis of parametrical vibrations of the ship shaft line there are used Mathieu's equation and Strutt-Ince diagram. Dynamic stability of a ship shaft line is defined subject to a gap between a propeller shaft and a stern bearing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.