Abstract

In this paper, we have constructed a solution for the problem of antiplane deformation of a uniformly piecewise homogeneous space of two alternately repeating heterogeneous layers of equal thickness from different materials, which are relaxed on their median planes by two semi-infinite, periodic parallel tunneling cracks. A system of defining equations of the problem is derived in the form of a system of two singular equations of the first kind, with respect to contact stresses acting in the contact zones on the median planes of heterogeneous layers, the solution of which, in the general case, is constructed by the method of mechanical quadrature. In the particular case when the cracks in the heterogeneous layers are the same, the solution of the problem is reduced to the solution of two independent equations and their closed solutions are constructed. The defining singular integral equation of the problem is also obtained in the case when there are no cracks in one of the heterogeneous layers. In the general case, a numerical calculation was carried out and patterns of changes in contact stresses and intensity factors of destructive stresses at the end points of cracks were determined depending on the physical and mechanical and geometric parameters of the problem, which are the ratios of the shear moduli of the layers and the ratio of the layer thickness and crack lengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.