Abstract

A series of six LiNbO3:Tb ([Tb] = 0.1 — 2.89 wt%) crystals and seven LiNbO3:Er ([Er] = 0.08÷2.71 wt%) crystals were grown according to a single methodology. Optical uniformity and optical resistance were compared in LiNbO3:Tb and LiNbO3:Er of various chemical composition. The periods of the crystal lattice were determined by the methods of a full -profile analysis of the XRD patterns of polycrystals; models of the atomic structure of LiNbO3:Tb and LiNbO3:Er crystals were analyzed with a change in the dopant concentration. In a series of LiNbO3:Tb crystals, a concentration threshold near the concentration of terbium ~ 2.2 — 2.3 wt% was discovered for the first time. A concentration threshold near the concentration of erbium ~ 2.4 — 2.5 wt% was discovered in LiNbO3:Er. In the area of the concentration threshold, pronounced anomalies of physicochemical, optical and structural characteristics are observed. Growth irregular and regular domain microstructures were revealed in as-grown LiNbO3:Tb and LiNbO3:Er crystals by optical and atomic force microscopy. Structural characteristics and threshold effects are studied in LiNbO3:Gd and LiNbO3:Gd,Cu crystals by Raman spectroscopy, PILS, laser conoscopy and optical microscopy. In LiNbO3:Gd crystals the photorefractive effect is suppressed at as low concentration as [Gd] = 0.05 wt%. For LiNbO3:Gd,Cu crystals a distinct photorefractive response is observed, it increases with increasing Cu concentration. The effect of the association of defects (carriers) is experimentally confirmed and thermodynamically justified by the example of oxygen-octahedron structures such as perovskite and pseudoi:lmental during ion conduction in a certain temperature interval. The discovered phenomenon is extremely important for creating and evaluating the temperature range of operability of ion current sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call