Abstract
The induction acceleration method is quite widely used in impact experiments with conductive disks. The paper presents an experimental study and numerical simulation concerning magnetic pulse acceleration of thin flat discs made of D16AM aluminium alloy. We used a flat copper coil and a capacitor power source to investigate magnetic pulse welding possibilities. The high-energy pulse method is efficient, safe, capable of precisely setting pulse discharge power by varying the capacitor (energy storage) capacitance and voltage, while heating the work piece with induced current can lead to an increase in its plasticity. We used the LS-DYNA finite element analysis software package to run our numerical simulation. The results obtained show that there is a significant disadvantage to using this acceleration setup: it is difficult to ensure that the sample accelerated remains planar.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have