Abstract

Establishing the regularities of the temperature influence of frozen soils on their physical and mechanical properties makes it possible to make more accurate estimates of the parameters of the interaction process of forest machines and skidding systems with the soil mass when performing logging operations with predetermined static loads. An adequate assessment of the state of the edge part of frozen soil mass is the basis for the formation of initial conditions when calculating the parameters of the destruction of the stress-deformed frozen soil layer, the processes of its compaction and deformation under the influence of static loads arising from the operation of various forest machines and skidding systems. The article presents methodology, hardware and the results of data processing obtained in field experimental studies to determine the effect of frozen soil temperature on its strength and deformation properties. To reveal the regularities of the change in soil temperature in depth, as well as in order to take soil samples for testing the mechanical properties in depth, soil benches with an area of 1×1 m and a depth of up to 1.0 m were opened. Sections were investigated in three areas with a predominance of: permafrost pale brown soils with sandy loam soil base; humus-carbonate soils with a loamy base; cryozem gley soils with a clay base. Soil temperature was measured near the ledge surface with a HI 98501 Hanna soil electronic thermometer (Germany) with a resolution of 0.1°C and an error of ± 0.3°C. The temperature value was measured as the depth increased with the help of a penetrating thermometer probe in the control holes along the depth of the ledge with a step of 0.1 m

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.