Abstract

The article is dedicated to the study of the physical and chemical properties of lithium niobate films made under different temperature conditions. Lithium niobate has already found its application in optics and has enormous potential in various technologies due to the emergence of effects such as piezoelectric effect, nonlinear optical effects, photoelasticity effect, and the Pockels effect (liner electro-optical effect). Lithium niobate can also be used in the oil industry as a catalyst for hydrogenation and dehydrogenation processes, hydrocracking, hydrodesulfurization, and hydroprocessing of oil and petroleum products due to its high surface activity, acidity, and thermal stability, as well as its ability to form stable dispersions in liquid media. The studies were cariied out using scanning electron microscopy technigues, scanning electron microscopy techniques, scanning electron microscopy to study the surface morphology of samples, Kelvin probe microscopy to measure the surface potential of the material, and piezoresponse force microscopy to register the piezoelectric effect of domain structures. As a result of the studies, scans of the surface morphology of samples were obtained, the electrical potential of the surface was measured, and the displacement of samples under the influence of an external elec-tric field with high resolution was also registered. The results of the study can be used to create new materials and devices with high performance and durability, as well as for further development of nanotechnology and nanoelectronics. Further research is planned to investigate other properties of lithium niobate films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call