Abstract
Flat face grinding is characterized with large areas of a cutting surface contact with a blank under machining which re-sults in intensive heat generations in a cutting area which is able to cause a thermal damage of the surface layer. Thereupon there is developed a designed heat model of a blank, the initial conditions are defined, and there is created a solid-state model of an abrasive segment with a trapezoidal face cutting surface and a temperature simulation of the blank ground with a solid and discrete face tool is carried out in a modern CAE- Solid Works complex. The result of modeling have shown that the application of the discrete face grinding tool equipped with abrasive segments allows decreasing a temperature of the surface machined by 26-30% as compared to a face grinding tool with a solid cutting surface, which decreases considerably the likelihood of defects appearance in a ground surface layer of a part.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have