Abstract

Friction treatment is an effective method to increase the strength and wear resistance of austenitic chromium-nickel steels. Previously, the authors identified that the high level of mechanical properties of metastable austenitic steels is achieved at the intensive development of deformation γ→α'-transformation. However, the presence of deformation martensite in the austenitic steel structure can negatively affect its anti-corrosion properties. The search for ways to improve the strength characteristics of stable austenitic chromium-nickel steel while maintaining high resistance to corrosion destruction is the up-to-date line of research. In this paper, to evaluate the mechanical properties of 03Cr16Ni14Mo3Ti steel in the hardened condition and after friction treatment, the authors applied the technique of measuring the hardness using the restored print and the method of instrumental micro-indentation, which allows recording the indenter loading and unloading diagrams. The corrosion failure resistance of steel was studied in general corrosion tests. The authors compared the corrosion rate of austenitic steel after grinding, electropolishing, and friction treatment; using scanning electron microscopy and optical profilometry, studied steel surfaces subjected to these treatments and determined their roughness. Nanostructuring friction treatment provides surface hardening of stable austenitic steel up to 570 HV 0.025. The study showed the high efficiency of friction treatment application to increase the strength characteristics and resistance of steel surface layer to elastic and plastic deformation. The authors identified that austenitic steel is characterized by similar corrosion rates km=(3.26–3.27)∙105 (g/cm2∙h) after electrolytic polishing (the structure of large-crystal austenite) and after frictional treatment (sub-micro/nanocrystalline austenite structure), while mechanical grinding leads to a twofold increase in the corrosion rate of 03Cr16Ni14Mo3Ti steel due to the occurrence of microcracks and metal breakouts on the polished surface. The research justified the determining role of the quality of the surface formed by various treatments (roughness, the presence of continuity defects) in ensuring the corrosion resistance of stainless steel.

Highlights

  • Для коррозионных испытаний готовили образцы в следующих состояниях: после электролитического полирования, шлифования на абразивной шкурке и после фрикционной обработки

  • Savrai R.A., Makarov A.V., Malygina I.Yu., Rogovaya S.A., Osintseva A.L. Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment // Diagnostics, Resource and Mechanics of materials and structures

Read more

Summary

ОБРАЗЦЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

В качестве материала исследования была выбрана коррозионностойкая аустенитная сталь 03Х16Н14М3Т (хим. состав в масс. %: 0,03С; 15,69Cr; 14,17Ni; 1,17Ti; 0,25Mn; 0,64Si; 2,67Mo; 0,03Co; 0,004Nb; 0,11Cu; 0,030P; 0,008S; 0,043V; Fe – остальное). Образцы из стали 03Х16Н14М3Т размерами 36×36×6 мм были вырезаны из круглого проката и подвергнуты термической обработке – закалке от 1100 °С в воду, механическому шлифованию и последующему электролитическому полированию. Микротвердость определяли по методу восстановленного отпечатка при нагрузке на индентор Виккерса 0,245 Н на микротвердомере SHIMADZU HMV-G21DT. Инструментальное микроиндентирование проводили на измерительной системе Fischerscope HM2000 XYm по стандарту ISO 14577 при максимальной нагрузке на индентор Виккерса 0,245 Н. Фазовый состав образцов определяли на рентгеновском дифрактометре SHIMADZU XRD-7000 в Crkα-излучении. Измерения проводили на участках размерами 0,9×1,2 мм и определяли среднеарифметическое отклонение профиля Ra и максимальную высоту профиля Rt. Для коррозионных испытаний готовили образцы в следующих состояниях: после электролитического полирования, шлифования на абразивной шкурке и после фрикционной обработки. Скорость коррозии km определяли по формуле km=Δm/S·τ, где Δm – потери массы образца, г; S – площадь поверхности образца, см; τ – время выдержки в коррозионной среде, ч

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ
We Wt
Вид обработки Шлифование Фрикционная обработка Электрополирование
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
СПИСОК ЛИТЕРАТУРЫ
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call