Abstract
In the context of increasing the electronic components integration level, growing functionality and packaging density, as well as reducing the electronics weight and size, an integrated approach to engineering calculations of parts and assemblies of modern functionally and technically complex microelectronic products is required. Of particular importance are engineering calculations and structural modeling using computer-aided engineering systems, and also assessment of structural, technological and operational factors’ impact on the products reliability and performance. This work presents an approach to engineering calculations and microelectronic products modeling based on the finite-element method providing a comprehensive account of various factors (material properties, external loading, temperature fields, and other parameters) impact on the stress-strain state, mechanical strength, thermal condition, and other characteristics of products. On the example of parts and assemblies of products of microelectronic technology, the approximation of structures was shown and computer finite-element models were developed to study various structural and technological options of products and the effects on them. Engineering calculations and modeling of parts and assemblies were performed, taking into account the impact of material properties, design parameters and external influences on the products’ characteristics. Scientific and technical recommendations for structure optimization and design and technology solutions ensuring the products resistance to diverse effects were developed. It has been shown that an integrated approach to engineering calculations and microelectronic products modeling based on the finite-element method provides for the determination of optimal solutions taking into account structural, technological, and operational factors and allows the development of products with high tactical, technical and operational characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.