Abstract
The paper overviews and analyses the current status of the development and research of active hydro-pneumatic dampers, which are used in rehabilitation equipment, where vortex jet devices can be applied as control valves. The study focuses on a vortex jet device whose distinctive feature is the absence of mechanically moving parts, describes the principle of its operation, and gives the rationale for using it in the active hydro-pneumatic damper of the knee module prosthesis. From a review of scientific and technical literature, a conclusion is drawn that active hydro-pneumatic dampers are used not only in rehabilitation equipment but also in vehicle shock absorbers. The experience gained in the design and development of active hydro-pneumatic dampers for vehicle shock absorbers was applied in the design and development of an active hydro-pneumatic damper for the knee module. In order to identify the advantages and disadvantages, we examined some designs of active hydro-pneumatic dampers for vehicle shock absorbers. Analysis of technical solutions showed the advantage of vortex jet devices, e.g. high reliability, the ability to work with various working environments, low manufacturing and operating costs; enabled us to recommend a vortex jet device to be used as an actuator, i.e., a vortex valve, in the valve assembly of an active hydro-pneumatic damper. The use of a vortex jet device increases the reliability of the structure and reduces the energy consumption for the control of the structure. The proposed design of the hydro-pneumatic damper allows the use of interactive damping control. The study is the first to introduce the concept and describe the principle of operation of an active hydro-pneumatic damper using a vortex jet device
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have