Abstract

Purpose. The article describes methodology for conducting research on parameters of compression foam cooling during its delivery through hose-pump systems depending on the operating modes of the foam generating installation. The impact of mass consumption of compression foam on its cooling at low temperatures has been examined. The application of a mathematical model of air-foam mixture movement in hose-pump systems at different temperature modes has been substantiated. Methods. Empirical method-experiment has been used for research. Findings. A number of experiments have been carried out to confirm the developed model of compression foam moving in hose-pump systems at different temperature modes. A mobile installation for generating and delivering compression foam has been used as the object of the research. Inaccuracy in calculations obtained with the help of a mathematical model in comparison with the experimental data is 10% which makes a possible to claim that the model of compression foam moving in hose-pump systems at different temperature modes has been chosen properly. Research application field. According to the obtained data, it is possible to plan means and forces of fire units for extinguishing fires using compression foam at low temperatures. Conclusions. The developed mathematical model of compression foam movement during its delivery through hose-pump systems is confirmed by experimental data. The dependence of mass consumption impact on compression foam cooling when it is delivered through fire hoses at low temperatures has been obtained experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.