Abstract
The adsorption and photocatalytic activity of iron-containing metal-ceramic composites produced by the self-propagating combustion of aluminum ferrosilicon in nitrogen with the addition of metallic tantalum (0, 5, 10, 15 wt%) during oxidative degradation of pharmaceutical pollutants (chloramphenicol, metamizole, cinnarizine) under UV and visible light was evaluated. The phase composition of the composite materials was determined by X-ray diffraction and infrared spectroscopy. The morphological features and optical properties of the composites were investigated, and the band gaps of the semiconductors included in the ceramic matrix were determined. The acid properties of the surface of the composites were studied using pH-metry and the Hammett indicator. The correlation of the number of surface-active sites and adsorption of pollutants with the corresponding value of pKa was shown, and the mechanisms of adsorption were proposed. Optimal conditions for the oxidative degradation of chloramphenicol (~100%) under visible light were found: a composite (5% Ta) with the addition of H2O2 to combine heterogeneous catalysis with the homogeneous photo-Fenton system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have