Abstract

An automated algorithm for calculating the time of the full cycle of operation, the stages of thermal stabilization and cooling of the reaction mixture in a reactor designed for the synthesis of a sulfur-containing sorbent produced on the basis of waste products from metallurgy, petrochemistry (sulfur), epichlorohydrin (1, 2, 4-trichloropropane) and the pulp and paper industry (lignin) for extraction from wastewater of heavy metal ions. The use of algorithms and a program for automated calculation of the reactor helps to reduce the complexity of production costs and the cost of the finished sorbent, increases the reliability of calculations and the quality of design solutions. The developed algorithms and program include the following calculation routines: physico-chemical properties of the components of the reaction mixture and the choice of a mixing device (propeller three-bladed agitator), taking into account the viscosity of the mixture; hydrodynamic calculation of the mixing device and heat transfer when heating the mixture from 20 to 45 °C; heat transfer during thermal stabilization and cooling of the working mixture, as well as the time of the full cycle of the reactor. The proposed algorithm of heat transfer during thermal stabilization of the reaction mass is based on the determination of the temperature range of water heating, compensating for heat losses. For this purpose, the inverse problem of heat transfer with unknown temperatures over a hot heat carrier is formulated and solved, such that the average value between them is a thermostabilizable value. An algorithm for calculating the cooling process of the reaction mixture in a sulfur-containing sorbent synthesis reactor, taking into account heat losses to the environment in the amount of 5%, is presented. A program has been developed that implements the presented algorithms in C#, designed to automate the calculation of a sulfur-containing sorbent synthesis reactor designed to extract heavy metal ions from wastewater.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.