Abstract

The main stages of the development of an emergency situation during the bottling of liquefied natural gas are presented. A tree of events has been formed in the event of the occurrence and development of a fire hazardous situation associated with the destruction of a tank or process pipeline with liquefied natural gas. Possible regimes of liquefied natural gas spreading on a smooth underlying surface and the formation of a variable power vapor source are identified. Models of liquefied natural gas evaporation are studied in relation to the composition and possible thickness of the filling layer. It is shown that under the assumption that the two phases are in thermodynamic equilibrium. The vapor phase density of liquefied natural gas can be obtained by solving the Peng-Robinson equation using the Klosek-McKinley method for a given pressure and temperature, which is based on an empirical correlation for the molar volume of the liquefied natural gas mixture. A model of a fast phase transition is formed based on the solution of the Van den Berg equation and an algorithm that automates the procedure for assessing the zones of influence of dangerous fire factors during an liquefied natural gas spill.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call