Abstract
Introduction. Friction stir welding and processing are almost identical processes of severe plastic deformation at elevated temperatures. These technologies differ mainly in the purpose of its use: the formation of a hardened surface layer or producing a welded joint. However, it is known that both during welding and during processing of heavy gauge workpieces temperature gradients occur. As a result, the conditions of adhesive interaction, material plastic flow, and the formation of the stir zone change as compared to thin-sheet workpieces with fundamentally different heat dissipation rates. In this connection, the purpose of the work is to determine the regularities of the structure formation and stability of the mechanical properties in different directions in the material of 35-mm-thick aluminum-magnesium alloy samples produced by friction stir welding/processing. Research Methodology. The technique and modes of friction stir welding and processing of AA5056 alloy workpieces with a thickness of 35 mm are described. Data on the equipment used for mechanical tests and structural research are given. Results and discussion. The data obtained show the excess mechanical properties of the processing zone material over the base metal ones in all studied directions. Material structure heterogeneities after friction stir welding/processing of heavy gauge workpieces have no determining effect on the stir zone properties. At the same time, there is no clear correlation between the tensile strength values and the load application direction, nor is there any significant difference in mechanical properties depending on the location of the samples inside the stir zone. The average ultimate tensile strength values in the vertical, transverse, and longitudinal directions are 302, 295 and 303 MPa, respectively, with the yield strength values of 155, 153 and 152 MPa, and the relative elongation of 27.2, 27.5, 28.7 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.