Abstract
Introduction. One of the priorities of toxicology and medicine is the study of the characteristics and mechanisms of action of combined xenobiotics – many risk factors for environmentally dependent diseases. Under the influence of extreme factors of various origins (heavy metals, nitrates, pesticides, tobacco, alcohol), formation of ROS, leading to the development of oxidative stress in the organism, which is accompanied by activation of lipid peroxidation and oxidative modification of proteins is enhanced. Under these conditions antioxidants and sorbents are commonly used.The aim of the study – to explore efficiency of enterosorbent karbolayn and its effect on oxidative processes in rats of different ages affected by sodium nitrite on the background of the 30-day tobacco intoxication.Research Methods. Given the defeat of rats of different ages sodium nitrite on the background of tobacco intoxication were tested for the ROS in the population of neutrophils, obtained by centrifugation on a double density gradient 1.077 and 1.093 ficoll-verografin, the content of TBA-active products in reaction with thiobarbituric acid and oxidative modification of proteins 2.4 dynitrofenilhidrazones content.Results and Discussion. The highest activity of free radical processes was marked after the defeat of sodium nitrite in 72 hours to 30 day of suspension toxicity of tobacco smoke. Immature and old rats were much more sensitive to the action of toxins than mature animals. Immature and old rats were much more sensitive to the action of toxins than mature animals. In order to inhibition of oxidative processes activated sorbent used by us karbolayn led to a slight normalization of the studied parameters. There was a trend toward reduction of reactive oxygen species in blood, TBA-active products and 2.4 dynitrophenilhidrazones in the studied tissues.Conclusions. The results indicate the advisability of including karbolayn to comprehensive treatment of poisoning of various origins.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.