Abstract

In order to provide a high-quality solution to the problem of computing convective heat transfer parameters in a laminar-to-turbulent boundary layer, it is necessary to numerically integrate differential equations describing that layer, completed by semi-empirical turbulent viscosity models, said models having been tested by comparing their output to the results of experimental investigations where the gas dynamics of a gas flow around a body is correctly simulated. Developing relatively simple yet adequately accurate computation methods becomes crucial for practical applications. To date, the effective length method, being simple yet apparently boasting an acceptable accuracy, has become the most widespread technique for solving this problem in aircraft design and aerospace technology. However, this statement is not correct for large Reynolds numbers on a hemisphere. Under these conditions, semi-empirical apparent turbulent viscosity models provide significantly better matches to experimental data. The paper analyses the feasibility of using a similar approach for the lateral surface of a blunted cone featuring a low aspect ratio. We describe a new efficient approach to solving this problem, demonstrating a high accuracy and maximum simplicity when used in practice. We check the results of systematic computations using our method against comparable data obtained via the most frequently cited approaches to solving this problem

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call