Abstract

The results of numerical simulation of the current dependence of the injection efficiency in the active area of the laser based on separate confinement heterostructures are presented. The feature of the transfer of charge carriers through isotype N-n heterotransitions on the interface boundary of waveguide and active areas is shown. Using the classic dependencies of the Drude-Lorentz theory, the cross-section of electrons and holes for the GaAs waveguide was evaluated. The resulting values of σe= 1.05∙10-18 cm2 and σp= 1.55∙10-19 cm2 and current dependencies of the injection efficiency allowed to determine the root-cause reason for the pulse power saturation of semiconductor lasers. It has been established that saturation of power-current characteristics is dominated by holes escape from the active region to the waveguide and internal optical losses are lower confinement factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.