Abstract Even when microscopic particle dynamics is purely mechanistic and thus reversible, the behavior of macroscopic systems composed of those particles is irreversible. In other words, effectively irreversible behavior emerges out of purely reversible dynamics when we do not observe all degrees of freedom of the detailed dynamics. But how can we find the irreversible macroscopic evolution equations when we only know the reversible microscopic equations? Using the so-called lack-of-fit reduction, which gives the reduced evolution as a sum of Hamiltonian and gradient dynamics, we reduce the purely Hamiltonian Kac–Zwanzig model to a set of irreversible evolution equations with no fitting parameters.