Zoysiagrass (Zoysia spp.) and its hybrids are known for their low maintenance requirements and are widely utilized as warm-season turfgrass, which offers considerable ecological, environmental, and economic benefits in various environments. Molecular genetic approaches, including the identification and genetic engineering of valuable gene resources, present a promising opportunity to enhance the quality and performance of zoysiagrass. This review surveys the recent molecular genetic discoveries in zoysiagrass species, with a focus on elucidating plant responses to various abiotic and biotic stresses. Furthermore, this review explores the notable advancements in gene function exploration to reduce the maintenance demands of zoysiagrass cultivation. In addition, we discuss the achievements and potential of contemporary molecular and genetic tools, such as omics approaches and gene editing technologies, in developing zoysiagrass cultivars with desirable traits. Overall, this comprehensive review highlights future strategies that may leverage current molecular insights to accelerate zoysiagrass improvement and further promote sustainable turf management practices.