Lassa fever, caused by the zoonotic Lassa virus (LASV), poses a significant health threat in Africa, leading to thousands of infections and deaths annually and has the potential to spread to other parts of the world. Despite the urgency for effective treatments, there are currently no approved drugs or vaccines for Lassa fever. LASV possesses a unique negative-sense RNA genome, and NP plays a crucial role in viral assembly and infection. Crystallographic analysis reveals distinct domains in NP, with the N-terminal domain involved in RNA binding and the C-terminal domain exhibiting exoribonuclease activity, suppressing type I interferon-mediated immune responses. This study explores the potential of repurposing existing FDA-approved drugs by targeting the N-terminal domain of LASV’s nucleoprotein (NP). Docking simulations and molecular dynamics experiments were conducted, revealing promising interactions between NP and widely used and well tolerated drugs such as metacycline, eltrombopag, glimepiride, lurasidone, paliperidone, prednisone, doxazosin, flavin mononucleotide, and pimozide. These drugs exhibited stable binding throughout 100 ns simulations, with interactions resembling those observed with the natural ligand, dTTP. Binding free energy calculations identified key amino acids, particularly Phe176 and Arg300, as crucial for drug-NP interactions. Notably, drugs like FMN, prednisone, metacycline, pimozide, and glimepiride displayed binding affinities comparable to dTTP, suggesting their potential as LASV inhibitors. The study underscores the importance of further experimental and clinical validation of these in silico findings. The identified drugs present promising candidates for potential treatments for Lassa fever, addressing the current gap in approved therapeutics for this life-threatening infectious disease.
Read full abstract