AbstractIt is well known that stratospheric sudden warmings (SSWs) are a result of the interaction between planetary waves (PWs) and the stratospheric polar vortex. SSWs occur when breaking PWs slow down or even reverse this zonal wind jet and induce a sinking motion that adiabatically warms the stratosphere and lowers the stratopause. In this paper we characterize this downward progression of stratospheric temperature anomalies using 18 years (2003–2020) of Sounding of the Atmosphere using Broadband Radiometry (SABER) observations. SABER temperatures, derived zonal winds, PW activity and gravity wave (GW) activity during January and February of each year indicate a high‐degree of year‐to‐year variability. From 11 stratospheric warming events (9 major and 2 minor events), the descent rate of the stratopause altitude varies from 0.5 to 2 km/day and the lowest altitude the stratopause descends to varies from <20 to ∼50 km (i.e., no descent). A composite analysis of temperature and squared GW amplitude anomalies indicate that the downward descent of temperature anomalies from 50 to ∼25 km lags the downward progression of increased GW activity. This increased GW activity coincides with the weakening and reversal of the westward zonal winds in agreement with previous studies. Our study suggests that although PWs drive the onset of SSWs at 30 km, GWs also play a role in contributing to the descent of temperature anomalies from the stratopause to the middle and lower stratosphere.