With rapid worldwide urbanization, the urban heat island (UHI) effect is becoming more and more serious. The UHI effect is more intense in industrial areas. Green roofs are an effective way to mitigate UHIs in high-density cities, which calls for thorough examination. This study explored the associations between the block characteristics and block thermal environment in high-density industrial areas based on the widely accepted Local Climate Zone (LCZ) scheme. The pedestrian air temperature comparisons before and after virtual green roof installations presented the cooling effects of green roofs. Thirty-six typical industrial blocks were involved in the study and the simulations were conducted utilizing ENVI-met. The results showed that (1) the air temperature in LCZ4 is significantly lower than those in LCZ2 and LCZ6, but no significant differences were identified between other pairs of LCZ types; (2) the cooling effect of green roofs significantly differs among LCZs, and is associated with sky view factor (SVF), average building area (ABA) and average building shape index (ABSI); (3) in high-density urban areas, additional functional parameters and building-volume indices should be included to better address the physical characteristics, thermal environment, and green roof cooling effect of industrial blocks. This study could improve the validity of LCZ classification for high-density industrial blocks and may provide direct implications for green roof planning.