Electron-beam treatment is a promising method of surface treatment. It can be used in traditional technological operations, i.e., melting, welding, soldering, facing, quenching, and annealing, and in new processes, i.e., polymerization, local change of magnetic properties, recrystallization of the surface layer, zonal melting, etc. Chemical heat treatment of a metal surface with a daubing applied by means of a powerful electron beam is an interesting technique. By varying the composition of the daubing we can change the properties of the metal surface (wear resistance, corrosion strength, high-temperature strength, etc.). Electron-beam heating has some advantages over laser treatment, namely, (1) a high coefficient of the absorption of electron beam by the metal, which makes it possible to treat the surface effectively without absorbing coatings, (2) simplicity of organization of rapid scanning of the treated surface by the electron beam, (3) high efficiency of the electron gun (up to 70–80%), (4) the possibility of creating quite compact technological electron-beam units with a power of tens and hundreds of kilowatts, (5) treatment in vacuum. In this connection interest in works in this field has grown. The present paper concerns results of a study of the structure and properties of boronized layers deposited on carbon steels by the method of electron-beam treatment under vacuum and by the traditional method for comparison.
Read full abstract