Ultrafast transient absorption spectroscopy is used to investigate the exciton dynamics of Type II ZnTe-ZnSe core-shell colloidal quantum dots. Surface-trapping is shown to occur within a few picosecond for hot electrons and with a few 10s of picoseconds for electrons cooled to the band-edge, and is the dominant process in the decay of the band-edge bleach for well-stirred samples pumped at moderate powers. The surface-trapped electrons produce a broad photo-induced absorption that spectrally overlaps with the band-edge, distorting and partially cancelling out the bleach feature. At high pump powers and for unstirred samples, these surface-trapped electrons can survive sufficiently long within the pumped volume to accumulate under repeated excitation of the sample, resulting in the formation of an additional exciton decay channel.