This work investigates the thermal Casimir effect associated with a massive spinor field defined on a four-dimensional flat space with a circularly compactified spatial dimension whose periodicity is oriented along a vector in the xy plane. We employ the generalized zeta function method to establish a finite definition for the vacuum free energy density. This definition conveniently separates into the zero-temperature Casimir energy density and additional terms accounting for temperature corrections. The structure of existing divergences is analyzed from the asymptotic behavior of the spinor heat kernel function and removed in the renormalization by subtracting scheme. The only non-null heat coefficient is the one associated with the Euclidean divergence. We also address the need for a finite renormalization to treat the ambiguity in the zeta function regularization prescription associated with this Euclidean heat kernel coefficient and ensure that the renormalization procedure is unique. The high- and low-temperature asymptotic limits are also explored. In particular, we explicitly show that free energy density lacks a classical limit at high temperatures, and the entropy density agrees with the Nernst heat theorem at low temperatures. Published by the American Physical Society 2024
Read full abstract