Recent seismic events, such as the Central Italy (2016), the Emilia (2012) and L’Aquila (2009) earthquake, have demonstrated the high vulnerability of cultural heritage represented by historical and monumental buildings. These structures are often characterized by the presence of elements with a curved geometry such as arches and vaults, which interact with the vertical elements (walls or columns) during the earthquake motion, producing a significant effect on the seismic response of the entire structure. Aiming at the reduction of the seismic vulnerability of curved masonry elements, several techniques of reinforcing based on composite fiber materials, have been recently developed and widely investigated by means of experimental tests and numerical simulations. The using of fiber reinforced systems, applied through cementitious mortar (FRCM), is becoming a very common technique of retrofitting for historical and monumental masonry buildings. This technique, if compared to the using of fiber polymeric materials (FRP), is more compatible with the mechanical properties of the masonry and more appropriate with the preservation needs of cultural heritage, associated to the historical constructions. A discrete macro-modeling approach, already available in the literature for modeling masonry structures with plane and curved geometry, is here employed to predict the non-linear behaviour of masonry arches strengthened with FRCM. In that approach the reinforcement is explicitly modeled by using a rigid plate, while the interaction between the reinforcement and the masonry support is governed by a discrete zero thickness interface. In this paper the interfacial behavior is updated with a more sophisticated bond-slip constitutive law specifically conceived for FRCM reinforcement within the framework of fracture mechanics; in particular the proposed calibration takes into account both the pure opening mode (mode I) and the in plane shear mode (mode II). The obtained numerical results are compared with an analytical closed form solution of the problem and validated by mean of experimental tests on prototypes, available in the literature.