Mineralization of fossil woods with unusual mineral phases remains an underconstrained process despite its relatively common occurrences. Aside from common mineralization agents such as silica or carbonates, there are also atypical mineralization associations, such as zeolite-group phases, but the zeolitization process has not yet been investigated in detail. We studied zeolitized woods collected from two localities in the Cenozoic alkaline České Středohoří Volcanic Complex (Ohře Rift, Czech Republic), where fossil woods of diverse paleobotanical classification were deposited in volcaniclastic rocks of the same origin (lahar) and stratigraphic formation (Upper Oligocene). The identical geological setting allowed the investigation of potential variables influencing this type of mineralization by combining paleobotanical classification, detailed mineralogy, mineral chemistry, geochemistry, Sr isotope analysis and KAr chronology.The new results demonstrate the significant potential of fossil woods mineralized with zeolite-group minerals to be used to reconstruct the formation and deposition conditions of the lahars in which these woods are contained. The composition of zeolites is strongly dependent on thermal conditions and material exchange between wood and host rocks. Dominant mineral phases are phillipsite and chabazite in variable proportions. The phillipsite/chabazite ratio correlates well with the magnitude of the Eu anomaly, suggesting crystallization of phillipsite at a higher temperature under hot-lahar conditions of deposition. Chabazite lacking an Eu anomaly represents the later, colder mineralization stage. The 87Sr/86Sr ratios ranging 0.7042–0.7047 provide an additional line of evidence of fluid derivation from volcaniclastic deposits of the Upper Oligocene Děčín Fm.