We consider the Cauchy problem for the generalized Zakharov–Kuznetsov–Burgers equation in 2D. This is one of the nonlinear dispersive–dissipative equations, which has a spatial anisotropic dissipative term −μuxx. In this paper, we prove that the solution to this problem decays at the rate of t−34 in the L∞-sense, provided that the initial data u0(x,y) satisfies u0∈L1(R2) and some appropriate regularity assumptions. Moreover, we investigate the more detailed large time behavior and obtain a lower bound of the L∞-norm of the solution. As a result, we prove that the given decay rate t−34 of the solution to be optimal. Furthermore, combining the techniques used for the parabolic equations and for the Schrödinger equation, we derive the explicit asymptotic profile for the solution.