ObjectiveTo investigate the intraoral development and kinetics of low-temperature degradation (LTD) in second-generation 3 mol.% yttria-doped tetragonal zirconia polycrystal (3Y-TZP) monolithic prostheses, as well as the influence of masticatory mechanical stress and glaze layer on it. MethodsA total of 101 posterior tooth elements were included in a prospective clinical study, which included ex vivo LTD monitoring (at baseline, 6 months, 1 year, and 2 years) using Raman spectroscopy (n = 2640 monoclinic phase measurement points per evaluation time) and SEM. Four types of areas (1–2 mm2 surface, 6 on molars, and 4 on premolars) were analyzed on each element surface: occlusal, axial, glazed, or unglazed. Raman depth mapping and high-resolution SEM were performed on the selected samples. ResultsLTD developed in 3Y-TZP monolithic restorations 6 months after intraoral placement and progressed with time. After two years, the tetragonal-to-monoclinic transformation was non-uniform, with the presence of localized clusters of transformed grains. In axial areas, the grain aspect was typical of the classical nucleation-growth process reported for LTD, which progresses from the surface to a depth of several tens of microns. However, in occlusal areas, tribological stress generated surface crushing and grain pull-out from the clusters, which induced an underestimation of the aging process when the evaluation was limited to monoclinic phase quantification. Glazing cannot be considered a protection against LTD. SignificanceIf LTD occurs in dental prostheses in the same way as in orthopedic prostheses, its clinical impact is unknown and needs to be further studied.
Read full abstract