AbstractBiochar is a porous fine‐grained substance produced from the pyrolysis technology of biomass that can be commercially used as a soil conditioner to promote soil fertility. Biochar is characterized by high carbon content, stability, and porosity. However, organic pollutants residue of polycyclic aromatic hydrocarbons (PAHs) is also formed during the pyrolysis of biochar. The high concentration of PAHs adversely degrades the quality of biochar for soil amendment application. Meanwhile, highly toxic‐PAHs concentration may pose a potential threat to both human health and the environment. The total PAHs yield is mainly influenced by the pyrolysis condition and feedstock resource. This review aims to discuss the conversion pyrolysis technology of biochar and factors that may influence the PAHs formation. The key research findings from this literature will lead to some strategies to minimize the PAHs compound in biochar by controlling the pyrolysis conditions through higher pyrolysis temperature, carrier gas flow, and prolonged pyrolysis time or by selecting suitable feedstock with lower lignin content.
Read full abstract