The green and sustainable production of lactic acid via photocatalytic conversion of biomass-derived sugars is highly significant owing to its enhanced efficiency and reduced energy requirements. Consequently, the investigation has engineered a metal-free photocatalyst (NCDs/CCN), consisting of N-doped carbon dots (NCDs) and ultrathin carbon nitride (CCN). This catalyst has an enhanced light absorption range, facilitating a marked acceleration in the separation rate of photogenerated carriers. It has demonstrated the capability to achieve a lactic acid yield of up to 87.6 % in just 90 min with a mere 20 mg catalyst concentration in a xylose-alkali system. Electron Paramagnetic Resonance (EPR) and quenching experiments indicate that superoxide radicals (·O2−) are the primary oxidizing active species in the photocatalytic system, followed by h+, ·OH, and 1O2. DFT analysis suggests nitrogen doping enhances interaction with xylose, lowering adsorption energy and accelerating lactic acid generation, thus improving economic feasibility and sustainability.
Read full abstract