The reaction of submonolayer Li atoms with CH3Cl at 100 K on a highly oriented pyrolytic graphite (HOPG) surface has been studied under ultrahigh vacuum. We exploit the low defect density of the high quality HOPG used here (∼109 defects cm–2) to eliminate the effects of step edges and defects on the graphite surface chemistry. Li causes C–Cl bond scission in CH3Cl, liberating CH3 radicals below 130 K. Ordinarily, two CH3 species would couple to form products such as C2H6, but in the presence of graphite, CH3 preferentially adsorbs on the flat basal plane of Li-treated graphite. A C–CH3 bond of 1.2 eV is formed, which is enhanced relative to CH3 binding to clean graphite (0.52 eV) due to donation of electrons from Li into the graphite and back-donation from graphite to CH3. A low yield of C1, C2, and C3 hydrocarbon products above 330 K is found along with a low yield of H2. The low yield of these products indicates that the majority of the CH3 groups are irreversibly bound to the basal plane of graphite, a...
Read full abstract