Glucocorticoid release by adrenals has been described as significant to survive sepsis. The activation of transient receptor potential vanilloid type 1 (TRPV1) inhibited ACTH-induced glucocorticoid release by adrenal glands in vitro. The aim of this study was to investigate if capsaicin, an activator of TRPV1, would prevent LPS-induced glucocorticoid production by adrenals. Male Swiss-Webster mice were treated with capsaicin intraperitoneally (0.2 or 2 mg/kg) 30 min before LPS injection. All analyses were performed 2 h after the LPS stimulation, including plasma corticosterone and peritoneal IL-1β and TNF-α levels. Furthermore, murine adrenocortical Y1 cells were used to assess the effects of capsaicin on LPS-induced corticosterone production in vitro. Capsaicin (2 mg/kg, i.p.) significantly reduced plasma corticosterone levels and adrenal hypertrophy induced by LPS without alter the levels of pro-steroidogenic cytokines IL-1β and TNF-α in peritoneal cavity of mice, while the dose of 0.2 mg/kg of capsaicin did not interfere with adrenal steroidogenesis, attested by RIA and ELISA, respectively. Y1 cells express TRPV1, measured by immunofluorescence and western blot, and capsaicin decreased LPS-induced corticosterone production by these cells in vitro. Capsaicin also induces calcium mobilization in Y1 cells in vitro. These findings suggest that capsaicin inhibits corticosterone production induced by LPS by acting directly on adrenal cells producing glucocorticoids, in a mechanism probably associated with induction of a cytoplasmic calcium increase in these cells.
Read full abstract