As the world’s largest accretionary orogen, the Central Asian Orogenic Belt (CAOB) underwent continuous juvenile crustal growth in the Phanerozoic. The northern margin of the North China Craton (NCC) and its adjacent area form the eastern segment of the CAOB, which is a key area for learning about the geological evolution of the Paleo-Asian Ocean (PAO). In the Permian, the west of the northern margin of the NCC was a post-collision extensional environment, while the east was in a subduction stage. As a connecting area, the Permian evolution of the PAO in the middle of the northern margin of the NCC has not been systematically studied. In order to fill the gap and understand the continuous temporal and spatial evolutionary process of the PAO, this paper focuses on the Permian granitic rocks in the Chifeng area. Zircon U-Pb dating and the geochemical analysis of whole-rock major and trace elements were conducted to build a granite chronological framework, and to discuss the genesis and tectonic background of the granitic rocks, along with tectono-magmatic evolutionary history in the Chifeng area. The respective LA-ICP-MS zircon U-Pb dating results from eight samples are 269 ± 1, 268 ± 3, 260 ± 4, 260 ± 1, 260 ± 1, 255 ± 2, 254 ± 2 and 256 ± 1 Ma, respectively. These results, combined with previous data, revealed that the Permian granitic rocks had undergone three events of magmatism: (1) monzogranitic-syenitic phase (294–284 Ma; Cisuralian); (2) monzogranitic phase (269–260 Ma; Guadalupian) and (3) late monzogranitic-syenitic phase (256–254 Ma; Lopingian). From the Early Permian (294–284 Ma) to the Middle Permian (269–260 Ma), granites with fine-medium-grained locally porphyritic texture and massive structure showed a high-potassium calc-alkaline series formed in a compressional setting, indicating a continuous collision between the Xing’an-Mongolian Orogenic Belt (XMOB) and the NCC. During the Late Permian-Early Triassic (256–248 Ma), granites with massive structure and medium-grained texture in the Chifeng area were magmatism dominated by A- and I-type granites of high-potassium calc-alkaline series, combined with the coeval basic rocks, which constituted a typical “bimodal” rock assemblage. This suggests that the Chifeng area was located in an extensional setting where the subducting slab broke off during the collision between the XMOB and NCC. These granitic plutons from the Permian are believed to have been generated by the subduction-collision of the Paleo-Asian oceanic crust beneath the NCC, according to emplacement time and occurrence location. Our findings provide strong evidence for Permian continuous temporal and spatial tectonic evolution and the characterization of the eventual closure of the PAO in Chifeng area at the northern margin of the NCC.
Read full abstract