Understanding of the diversity and petrogenesis of achondrites is critical for deciphering magmatic processes and the early evolution of planets and asteroids. Here, we report the detailed petrologic, mineralogical, geochemical, and chronological features of the unbrecciated Vestan meteorite Northwest Africa (NWA) 8326. We found that NWA 8326 is composed of coarse-grained orthopyroxene (∼74 vol%), plagioclase (∼19 vol%), fine-grained augite (∼5 vol%), and many accessory minerals such as chromite, ilmenite, Fe-sulfide, silica phases, K-feldspar, Ca-phosphate phases, zircon, baddeleyite, rutile, and primary Si,Al,K-rich glass, differing from typical howardite-eucrite-diogenite meteorites. Based on textural feature and compositional calculation of pyroxene, we suggest that the coarse-grained orthopyroxene was inverted from primary pigeonite and NWA 8326 should be classified as a pigeonite cumulate eucrite. The oxygen and chromium isotope data (Δ17O = − 0.254 ± 0.009 ‰; ε54Cr = − 0.60 ± 0.06) support this classification. A few zircon aggregates are observed in NWA 8326 and the grains therein show a core-mantle zoned texture in cathodoluminescence (CL) images, with the cores being dark and Al-rich while the mantles being bright and Al-poor. We interpret that the CL-dark cores are xenocrystic zircon grains derived from eucrites, whose presence indicates that NWA 8326 should have formed through partial melting of the Vestan mantle, with assimilation of eucritic material. The presence of xenocrystic zircon and primary Si,Al,K-rich glass and the large compositional variation of plagioclase indicate that NWA 8326 is an unequilibrated cumulate eucrite and hence the zircon 207Pb/206Pb age of 4559.2 ± 5.2 (2σ) Ma represents the crystallization of NWA 8326. Reconciling the cumulative texture with the presence of the chemically evolved glass, NWA 8326 would be excavated during the late stage of its crystallization and escaped the prevalent crustal thermal metamorphism of the eucrite parent body. The Mg isotopic composition of NWA 8326 is higher than most diogenites, which suggests that the parent magma of such a pigeonite cumulate eucrite was derived from a source region with heavier magnesium isotopic composition (μ25Mg: −90 to − 96 ppm).
Read full abstract