The pervasive use of the plasticizer di(2-ethylhexyl) phthalate (DEHP) poses potential risks to global aquatic ecosystems. This study systematically evaluated the adverse effects of chronic exposure to environmentally relevant concentrations of DEHP on gill tissues of crucian carp, utilizing histological examination, metabolomic, and transcriptomic analysis. The results demonstrated that DEHP induced significant histopathological alterations in gill tissues, with significant enrichment observed in multiple pathways associated with amino acid, hormone, lipid, and xenobiotic metabolism. Metabonomics-transcriptomics analyses indicated that DEHP-induced significantly over-activation of cytochrome P450 1B1-like (p < 0.001) and cytochrome P450 3A30-like (p < 0.05) via the nuclear xenobiotic receptors pathway was a key factor contributing to the disruption of tryptophan metabolism and steroid hormone biosynthesis, as well as inducing circadian rhythm disruption. Moreover, circadian rhythm disruption further exacerbated the imbalance of cytochrome P450 (CYP450) enzyme system as well as linoleic acid, arachidonic acid, sphingolipid, and glycerophospholipid metabolism. Overall, the feedback regulation between the CYP450 enzyme system and circadian rhythms emerged as the primary mechanism underlying DEHP-induced metabolic and transcriptional disruptions, ultimately resulting in gill toxicity. This study not only enriched the toxic effects on aquatic organisms of chronic exposure to DEHP, but provided potential biomarkers for the environmental risk assessment of DEHP.
Read full abstract