Anthelmintic resistance in livestock animals has been spreading across the world in prevalence and severity. As a result, researchers are exploring alternative strategies to combat this issue, and one promising avenue is the utilization of medicinal plants. This study aims to investigate the anthelmintic efficacy of the crude ethanolic extract (CEE) derived from the leaves of Juglans regia against one of the most detrimental nematode parasites affecting poultry, namely Ascaridia galli (A. galli). For the in vitro studies, adult A. galli worms were collected from the naturally infected chickens and the efficacy of CEE was measured at the concentration of 25, 50, and 100mg/ml using adult worm motility inhibition (WMI) assay. In addition, levamisole (0.55mg/ml) was used as the positive control. Likewise, Phosphate buffered saline (PBS) was used as the negative control. For the in vivo studies, CEE of J.regia at the doses of 500, 1000, and 2000mg/kg were evaluated in chickens experimentally infected with A. galli. The anthelmintic efficacy was monitored using faecal egg count reduction (FECR) and worm count reduction (WCR) assays. In vitro studies revealed significant (P < 0.001) anthelmintic effects of CEE of J.regia on the motility of A. galli worms at different hours post-exposure. At the concentration of 100mg/ml, CEE resulted in 96.5% inhibition of worm motility at 24h post-exposure. While the synthetic anthelmintic drug, levamisole caused the highest inhibition of worm motility (100%) at the same time period. The in vivo anthelmintic activity of CEE of J. regia demonstrated a maximum effect on day 14 post-treatment by inducing 67.28% FECR and 65.03% WCR. We observed no significant difference (P > 0.05) in worm counts between the negative control group and the chickens treated with CEE at the dosage of 500mg/kg. Together, the results of the present study suggest that CEE of J. regia leaves possess anthelmintic properties and could be a potential source of novel anthelmintic compounds for controlling helminth parasites.
Read full abstract