AbstractThe COVID‐19 pandemic perturbed air pollutant emissions as cities shut down worldwide. Peroxyacyl nitrates (PANs) are important tracers of photochemistry that are formed through the oxidation of non‐methane volatile organic compounds in the presence of nitrogen oxide radicals (NOx = NO + NO2). We use satellite measurements of free tropospheric PANs from the Suomi‐National Polar‐orbiting Partnership Cross‐track Infrared Sounder (CrIS) over eight of the world's megacities. We quantify the seasonal cycle of PANs over these megacities and find seasonal maxima in PANs correspond to seasonal peaks in local photochemistry. CrIS is used to explore changes in PANs in response to the COVID‐19 lockdowns. Statistically significant changes to PANs occurred over four megacities: with decreases over Los Angeles and Delhi, and increases over Mexico City and Beijing in the winter. Our analysis suggests that large perturbations in NOx may not result in significant declines in NOx export potential of megacities.
Read full abstract