In order to examine path planning and the control of redundant degrees of freedom in the human arm, the movements of the shoulder, elbow and wrist were recorded as subjects moved a pointer to a target and avoided a simple obstacle. With respect to joint control, the results show that the extra degree of freedom provided by the wrist is incorporated into target movements in a systematic manner for both large and small obstacles; it is not used only when there is no geometrical alternative. For the wrist, two strategies are apparent, depending upon the length of the obstacle. Wrist extension predominates for shorter obstacles, while flexion or extension and flexion predominate for longer obstacles. These wrist movements shorten the effective length of the distal segments (lower arm plus hand and pointer) and thus reduce the excursion required at the proximal joints. In part, they correspond to assuming the most comfortable arm configuration at each point in the new path necessitated by the obstacle and can be described by static cost functions. However, wrist extension is also used to move the hand and pointer away from the obstacle as shoulder and elbow movements carry the wrist itself towards the obstacle. Wrist flexion is also used to move the pointer tip rapidly past the obstacle. These components, which cannot be explained by static cost functions alone, confirm for the human arm the hypothesized use of redundant degrees of freedom in obstacle avoidance. With respect to path planning, the results show that the minimum distance between pointer and obstacle remains fairly constant over a large range of obstacle lengths; this relative invariance is interpreted to support the hypothesis that workspace coordinates are important for movement planning. However, minimum distance and several other path parameters do depend significantly on the orientation and location of the movement in the workspace. This inhomogeneity implies that movement planning does not occur exclusively in workspace coordinates; it suggests an influence of joint space criteria. In frontal movements, for example, the systematic decline in the minimum distance with increasing obstacle length is interpreted as a compromise reducing the amount of extra joint movement and the discomfort of arm configurations.
Read full abstract