Cloud infrastructures are designed to provide highly scalable, pay-as-per-use services to meet the performance requirements of users. The workload prediction of the cloud plays a crucial role in proactive auto-scaling and the dynamic management of resources to move toward fine-grained load balancing and job scheduling due to its ability to estimate upcoming workloads. However, due to users’ diverse usage demands, the changing characteristics of workloads have become more and more complex, including not only short-term irregular fluctuation characteristics but also long-term dynamic variations. This prevents existing workload-prediction methods from fully capturing the above characteristics, leading to degradation of prediction accuracy. To deal with the above problems, this paper proposes a framework based on a dual-channel temporal convolutional network and transformer (referred to as DuCFF) to perform workload prediction. Firstly, DuCFF introduces data preprocessing technology to decouple different components implied by workload data and combine the original workload to form new model inputs. Then, in a parallel manner, DuCFF adopts the temporal convolution network (TCN) channel to capture local irregular fluctuations in workload time series and the transformer channel to capture long-term dynamic variations. Finally, the features extracted from the above two channels are further fused, and workload prediction is achieved. The performance of the proposed DuCFF’s was verified on various workload benchmark datasets (i.e., ClarkNet and Google) and compared to its nine competitors. Experimental results show that the proposed DuCFF can achieve average performance improvements of 65.2%, 70%, 64.37%, and 15%, respectively, in terms of Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE) and R-squared (R2) compared to the baseline model CNN-LSTM.
Read full abstract