Aging in wooden barrels is a process used to stabilize the color and enrich the sensorial characteristics of wine. Many compounds are released from wood into the wine; oxygen permeation through the wood favors formation of new anthocyanin and tannin derivatives. Recently, polyphenols and volatile compounds released from acacia, chestnut, cherry, mulberry, and oak wood used in making barrels for spirits and wine aging were studied. Here, changes in volatile and polyphenolic compositions of a red wine aged for 9 months in acacia, cherry, chestnut, mulberry, and oak barrels are studied. Mulberry showed significant decreases of fruity-note ethyl esters and ethylguaiacol and a great cession of ethylphenol (horsey-odor defect). Cherry promoted the highest polyphenol oxidation, making it less suitable for long aging. LC/ESI-MS(n) showed the relevant presence of cis- and trans-piceatannol in mulberry-aged wine, a phytoalexin with antileukemia and antimelanoma activities.