Background and Objectives: Wolfram syndrome type 1 (OMIM# 222300; ORPHAcode 3463) is an extremely rare autosomal recessive syndrome with a 25% recurrence risk in children. It is characterized by the presence of juvenile-onset diabetes mellitus (DM), progressive optic atrophy (OA), diabetes insipidus (DI), and sensorineural deafness (D), often referred to by the acronym DIDMOAD. It is a severe neurodegenerative disease with a life expectancy of 39 years, with death occurring due to cerebral atrophy. For a positive diagnosis, the presence of diabetes mellitus and optic nerve atrophy is sufficient. The disease occurs because of pathogenic variants in the WFS1 gene. The aim of this article is to present a case report of Wolfram Syndrome Type I, alongside a review of genetic variants, clinical manifestations, diagnosis, therapy, and long-term management. Emphasizing the importance of early diagnosis and a multidisciplinary approach, the study aims to enhance understanding and improve outcomes for patients with this complex syndrome. Materials and Methods: A case of a 28-year-old patient diagnosed with DM at the age of 6 and with progressive optic atrophy at 26 years old is presented. Molecular diagnosis revealed the presence of a heterozygous nonsense variant WFS1 c.1943G>A (p.Trp648*), and a heterozygous missense variant WFS1 c.1675G>C (p.Ala559Pro). Results: The molecular diagnosis of the patient confirmed the presence of a heterozygous nonsense variant and a heterozygous missense variant in the WFS1 gene, correlating with the clinical presentation of Wolfram syndrome type 1. Both allelic variants found in our patient have been previously described in other patients, whilst this combination has not been described before. Conclusions: This case report and review underscores the critical role of early recognition and diagnosis in Wolfram syndrome, facilitated by genetic testing. By identifying pathogenic variants in the WFS1 gene, genetic testing not only confirms diagnosis but also guides clinical management and informs genetic counseling for affected families. Timely intervention based on genetic insights can potentially reduce the progressive multisystem manifestations of the syndrome, thereby improving the quality of life and outcomes for patients.