ABSTRACT In the present study, bio-citric acid/tungsten oxide (WO3) (BCAWO) nanoparticles (NPs) were prepared by using Solanum lycopersicum fruit extract as a reducing as well as a capping agent. The photocatalysts were characterized by UV–vis diffuse reflection spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), high-resolution transmission electron microscopy, and photoluminescence spectroscopy techniques. Diffraction peaks in the XRD spectrum were identified as the crystal planes of crystalline tungsten oxide. The BCAWO had an average size of 23.14 nm. For W–O bonds, the Fourier transform infrared spectrum displays the vibrational peak at 671.23 cm−1. A prominent absorption band was observed at 268 nm, indicating the 1.2 eV bandgap. Under xenon (Xe) lamp irradiation, the synthesized BCAWO nanoparticles showed notable photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP), with a degradation rate of 96%. With BCAWO concentrations of 2.5 g/L, pH of 4, reaction period of 180 min, and 2,4 DCP concentration of 10 mg/L, the degradation of 2,4-DCP had the highest efficacy, 96%. The degradation of phenols in wastewater may be facilitated by using the green WO3 nanoparticles as a photocatalyst, according to the results.
Read full abstract