Vascular remodeling is the main pathological process that causes the damage of the target organ of hypertension. Perivascular adipose tissue (PVAT) surrounds blood vessels and plays a key role in the pathogenesis of various cardiovascular diseases. This study aimed to investigate the effects of renal denervation (RDN) on hypertensive vascular remodeling and to elucidate the role of PVAT in this process. Male spontaneously hypertensive rat (SHR) and Wistar-Kyoto (WKY) rat were selected. Aortic vascular remodeling was evaluated using hematoxylin and eosin (H&E) staining and Masson's trichrome staining. Morphological changes in the PVAT were observed through H&E and Oil Red O staining. Dihydroethidium was used to measure oxidative stress levels in PVAT, while western blot analysis was used to determine the expression levels of proteins associated with vascular remodeling. The results showed that the aortic medial thickness, media thickness/lumen diameter, collagen volume fraction, and reactive oxygen species (ROS) level in PVAT were significantly higher in the SHR group than in the WKY group. The indexes mentioned above were lower in the SHR-RDN group than in the SHR group. H&E staining revealed that fat droplets in PVAT in the SHR-RDN group became smaller and browning occurred. Moreover, the protein expression of uncoupling protein-1 (UCP-1) and neuregulin 4 (Nrg4) was significantly increased in the SHR-RDN group. In addition, the expression of adiponectin increased and the expression of leptin decreased in the SHR-RDN group compared to the SHR group. In conclusion, RDN can relieve hypertensive vascular remodeling, which may be associated with PVAT.
Read full abstract