In this work, we demonstrate a self-powered wireless PV module monitoring system that utilizes a thermoelectric generator (TEG) to convert residual thermal energy from the PV module into electrical power. We investigated the TEG performance with and without the heat sink. Results show that the temperature difference between the hot and cold sides of the TEG increased to 7.2 °C with the heat sink, compared to only 1 °C without it, at a hot side temperature of 50 °C. We integrated the TEG/heat sink with the PV module, which served as the heat source, achieving a maximum output power of 0.981 mW at a voltage of 0.06 V under a temperature gradient of 3.6 °C in a 1 sun condition. We successfully demonstrated a self-powered wireless PV monitoring sensor system by integrating a step-up voltage converter, microcontroller, IR thermometer, Bluetooth communication module, and the TEG/heat sink, which generated sufficient power for the monitoring system operation. The findings introduce a novel solution for wireless PV module monitoring that operates independently of grid connections or battery power. This innovation not only signifies advancements in renewable energy management but also opens new opportunities in the Internet of Things (IoT) sector.
Read full abstract