The derivation of the boundary conditions is the most challenging part of the asymptotic techniques underlying low-dimensional models for thin elastic structures. At the moment, these techniques do not take into consideration the effect of the environment, e.g., a Winkler foundation, when tackling boundary conditions, and have to be amended. In this paper as an example we consider an antiplane problem for a thin elastic strip contacting with a relatively compliant Winkler foundation. Refined boundary conditions at an edge loaded by prescribed stresses are established using a properly adjusted Saint-Venant’s principle. They appear to be useful for advanced structure modelling including analysis of the static equilibrium under self-equilibrated loading.